

Avalanche bridge

Power Bridge Rectifiers

SKBa 25

Features

- Square plastic case with isolated metal base plate and fast-on connectors
- Avalanche characteristics
- Minimum breakdown voltage of 1300 and 1700 V
- High surge current
- Easy chassis mounting
- UL-94V0 plastic material

Typical Applications

- Inductive Loads
- Solenoid power supply
- Motor brakes
- Rectifier for power supplies
- · DC motor field supplies
- Freely suspended or mounted on an insulator
- 2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm

V _{RSM} , V _{RRM}	V _{VRMS}	I _D = 17 A (T _c = 75 °C)	C _{max}	R _{min}
V	V	Types	μF	Ω
	500 660	SKBa 25/13 $(V_{(BR)min} = 1300 \text{ V})$ SKBa 25/17 $(V_{(BR)min} = 1700 \text{ V})$ $P_{RSM} = 6 \text{ kW } \textcircled{2} \text{ T}_{vj} = 150 ^{\circ}\text{C},$ $t_p = 10 \mu\text{s}$		1 1,5

Symbol	Conditions	Values	Units
I _D	T _a = 45 °C, isolated ¹⁾	3,5	Α
	T _a = 45 °C, chassis ²⁾	10	Α
I _{DCL}	T _a = 45 °C, isolated ¹⁾	3	Α
	T _a = 45 °C, chassis ²⁾	9,5	Α
	$T_a = {^{\circ}C},$		Α
I _{FSM}	T _{vj} = 25 °C, 10 ms	370	Α
	$T_{vj} = 150 ^{\circ}\text{C}, 10 \text{ms}$	320	Α
i²t	T _{vj} = 25 °C, 8,3 10 ms	680	A²s
	T _{vj} = 150 °C, 8,3 10 ms	500	A²s
V _F	T _{vj} = 25°C, I _F = 150 A	max. 2,2	V
V _(TO)	$T_{vj} = 150^{\circ}C$	max. 0,85	V
r _T	$T_{vj} = 150^{\circ}C$	max. 12	mΩ
I_{RD}	$T_{vj}^{3} = 25^{\circ}C, V_{RD} = V_{RRM}$	20	μA
	$T_{vi} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		μA
I _{RD}	$T_{vj} = 150$ °C, $V_{RD} = V_{RRM}$	4	mA
	$T_{vi} = C, V_{RD} = V_{RRM} \ge V$		mA
t _{rr}	$T_{vj} = 25^{\circ}C$	10	μs
f_G		2000	Hz
R _{th(j-a)}	isolated ¹⁾	15	K/W
3 3,	chassis ²⁾	4,7	K/W
R _{th(j-c)}	total	2	K/W
R _{th(c-s)}	total	0,15	K/W
T _{vi} ´		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a.c. 50 60 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M_s	to heatsink	2 ± 15 %	Nm
M_t			Nm
а			m/s²
w		24	g
Fu		20	Α
Case		G 10b	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.