Avalanche bridge ## Power Bridge Rectifiers #### SKBa 25 #### **Features** - Square plastic case with isolated metal base plate and fast-on connectors - Avalanche characteristics - Minimum breakdown voltage of 1300 and 1700 V - High surge current - Easy chassis mounting - UL-94V0 plastic material ### **Typical Applications** - Inductive Loads - Solenoid power supply - Motor brakes - Rectifier for power supplies - · DC motor field supplies - Freely suspended or mounted on an insulator - 2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm | V _{RSM} , V _{RRM} | V _{VRMS} | I _D = 17 A (T _c = 75 °C) | C _{max} | R _{min} | |-------------------------------------|-------------------|---|------------------|------------------| | V | V | Types | μF | Ω | | | 500
660 | SKBa 25/13 $(V_{(BR)min} = 1300 \text{ V})$
SKBa 25/17 $(V_{(BR)min} = 1700 \text{ V})$
$P_{RSM} = 6 \text{ kW } \textcircled{2} \text{ T}_{vj} = 150 ^{\circ}\text{C},$
$t_p = 10 \mu\text{s}$ | | 1
1,5 | | Symbol | Conditions | Values | Units | |----------------------|--|-------------------|-------| | I _D | T _a = 45 °C, isolated ¹⁾ | 3,5 | Α | | | T _a = 45 °C, chassis ²⁾ | 10 | Α | | I _{DCL} | T _a = 45 °C, isolated ¹⁾ | 3 | Α | | | T _a = 45 °C, chassis ²⁾ | 9,5 | Α | | | $T_a = {^{\circ}C},$ | | Α | | I _{FSM} | T _{vj} = 25 °C, 10 ms | 370 | Α | | | $T_{vj} = 150 ^{\circ}\text{C}, 10 \text{ms}$ | 320 | Α | | i²t | T _{vj} = 25 °C, 8,3 10 ms | 680 | A²s | | | T _{vj} = 150 °C, 8,3 10 ms | 500 | A²s | | V _F | T _{vj} = 25°C, I _F = 150 A | max. 2,2 | V | | V _(TO) | $T_{vj} = 150^{\circ}C$ | max. 0,85 | V | | r _T | $T_{vj} = 150^{\circ}C$ | max. 12 | mΩ | | I_{RD} | $T_{vj}^{3} = 25^{\circ}C, V_{RD} = V_{RRM}$ | 20 | μA | | | $T_{vi} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$ | | μA | | I _{RD} | $T_{vj} = 150$ °C, $V_{RD} = V_{RRM}$ | 4 | mA | | | $T_{vi} = C, V_{RD} = V_{RRM} \ge V$ | | mA | | t _{rr} | $T_{vj} = 25^{\circ}C$ | 10 | μs | | f_G | | 2000 | Hz | | R _{th(j-a)} | isolated ¹⁾ | 15 | K/W | | 3 3, | chassis ²⁾ | 4,7 | K/W | | R _{th(j-c)} | total | 2 | K/W | | R _{th(c-s)} | total | 0,15 | K/W | | T _{vi} ´ | | - 40 + 150 | °C | | T _{stg} | | - 55 + 150 | °C | | V _{isol} | a.c. 50 60 Hz; r.m.s.; 1 s / 1 min. | 3000 / 2500 | V~ | | M_s | to heatsink | 2 ± 15 % | Nm | | M_t | | | Nm | | а | | | m/s² | | w | | 24 | g | | Fu | | 20 | Α | | Case | | G 10b | | This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.